a^2+a^2=24^2

Simple and best practice solution for a^2+a^2=24^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+a^2=24^2 equation:



a^2+a^2=24^2
We move all terms to the left:
a^2+a^2-(24^2)=0
We add all the numbers together, and all the variables
2a^2-576=0
a = 2; b = 0; c = -576;
Δ = b2-4ac
Δ = 02-4·2·(-576)
Δ = 4608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4608}=\sqrt{2304*2}=\sqrt{2304}*\sqrt{2}=48\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{2}}{2*2}=\frac{0-48\sqrt{2}}{4} =-\frac{48\sqrt{2}}{4} =-12\sqrt{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{2}}{2*2}=\frac{0+48\sqrt{2}}{4} =\frac{48\sqrt{2}}{4} =12\sqrt{2} $

See similar equations:

| -7n+21=-63 | | 3^4x-1=9^x+1 | | 6-8t=4+10(9-3t) | | 6x+5=118 | | W+23=43;w=28 | | 6(k-8)=48+6k | | x=12=-36 | | -z-6z=8z-3-3z | | M4=16;m=4 | | 3+5q=58 | | 2x^2+(-9)-41= | | 3(7.5x-3)=171 | | g*14=111 | | (x-5)/(-2)=15 | | 365=11(s-40)+35 | | 6.6x=30 | | 8t²-10=-82 | | 20-4x-2x=10 | | 11x+20=12+24 | | 7y-10=7+2y | | 52.8x=0.04x | | 3*1-7=y | | 36=n-(-19) | | k+(-12)=6 | | 1/4(6x+9)=12 | | -2y-5(-8y-4)=7+3(-8-y) | | x^-9x-36=0 | | 1/8​+c=4/5 | | 32h=16 | | 180=18m | | p-(-5)=11 | | 2(2x+4)=4(2x-5) |

Equations solver categories